Representation results for law invariant, time consistent functions

W. Schachermayer
joint work with M. Kupper

University of Vienna
Faculty of Mathematics

January 2009
Theorem A

Let \((\varrho_t)_{t \in \mathbb{N}_0}\) be a law invariant, time consistent, dynamic convex risk measure. Then there is \(\gamma \in [0, \infty]\) such that

\[\varrho_t(X) = \frac{1}{\gamma} \ln \mathbb{E}[\exp(-\gamma X) | \mathcal{F}_t], \]

the limiting cases \(\gamma = 0\) (resp. \(\gamma = \infty\)) being defined as

\[\varrho_t(X) = \mathbb{E}[-X | \mathcal{F}], \quad \gamma = 0, \]

\[\varrho_t(X) = \text{ess sup}_{Z \in \mathcal{P}_t} \mathbb{E}[Z(-X) | \mathcal{F}_t], \quad \gamma = \infty \]

where \(\mathcal{P}_t\) denotes the set of all positive functions \(Z\) with \(\mathbb{E}[Z | \mathcal{F}_t] = 1\).
Setting

Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{N}_0}, \mathbb{P})\), which we assume to be of the form \(\Omega = [0, 1]^\mathbb{N}, \mathbb{P} = \lambda \otimes \mathbb{N}\), and \(\mathcal{F}_t\) generated by the first \(t\) coordinates.

Remark

Freddy Delbaen has obtained similar results in a continuous time setting and for a Brownian filtration \((\mathcal{F}_t)_{t \geq 0}\).
Setting

Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{N}_0}, \mathbb{P})\), which we assume to be of the form \(\Omega = [0, 1]^\mathbb{N}, \mathbb{P} = \lambda \otimes \mathbb{N}\), and \(\mathcal{F}_t\) generated by the first \(t\) coordinates.

Remark

Freddy Delbaen has obtained similar results in a continuous time setting and for a Brownian filtration \((\mathcal{F}_t)_{t \geq 0}\).
a) A **dynamic convex risk measure** is a family \((\varrho_t)_{t \in \mathbb{N}_0}\) of mappings

\[
\varrho_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})
\]

such that, conditionally on \(\mathcal{F}_t\), the usual properties of a convex risk measure are satisfied (convexity, monotonicity, cash invariance).
Definition

a) A **dynamic convex risk measure** is a family \((\varrho_t)_{t \in \mathbb{N}_0}\) of mappings

\[
\varrho_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})
\]

such that, conditionally on \(\mathcal{F}_t\), the usual properties of a convex risk measure are satisfied (convexity, monotonicity, cash invariance).

b) It is called **time consistent** if

\[
\varrho_0(X) = \varrho_0(-\varrho_t(X)), \quad X \in L^\infty(\Omega, \mathcal{F}, \mathbb{P})
\]

and it has the localisation property

\[
1_A \varrho_t c_t(X) = \varrho_t c_t(1_A X), \quad \text{for } A \in \mathcal{F}_t.
\]
Definition

a) A **dynamic convex risk measure** is a family \((\varrho_t)_{t \in \mathbb{N}_0}\) of mappings
\[
\varrho_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})
\]
such that, conditionally on \(\mathcal{F}_t\), the usual properties of a convex risk measure are satisfied (convexity, monotonicity, cash invariance).

b) It is called **time consistent** if
\[
\varrho_0(X) = \varrho_0(-\varrho_t(X)), \quad X \in L^\infty(\Omega, \mathcal{F}, \mathbb{P})
\]
and it has the localisation property
\[
\mathbbm{1}_A \varrho_t c_t(X) = \varrho_t c_t(\mathbbm{1}_A X), \quad \text{for } A \in \mathcal{F}_t.
\]

c) It is called **law invariant** if
\[
\varrho_0(X) = \varrho_0(Y) \text{ if law}(X) = \text{law}(Y).
\]
Remark

Law invariance implies the Fatou property (i.e., weak-star semi-continuity) of ϱ_0 (c.f. Jouini, S., Touzi 2006).
The entropic risk measure is (up to the sign) a special case of the mean value insurance premium principle (Gerber, 1979)

$$c_t(X) = u^{-1}(E[u(X)|\mathcal{F}_t])$$

where u is an increasing concave function $u : \mathbb{R} \to \mathbb{R}$.
Clearly such a premium principle \((c_t)_{t \in \mathbb{N}_0}\) is **time consistent** as, for \(0 \leq s \leq t\),

\[
c_s(c_t(X)) = u^{-1}\mathbb{E}[u(u^{-1}\mathbb{E}[u(X)|\mathcal{F}_t])|\mathcal{F}_s] = c_s(X).
\]
Clearly such a premium principle \((c_t)_{t \in \mathbb{N}_0}\) is **time consistent** as, for \(0 \leq s \leq t\),

\[
c_s(c_t(X)) = u^{-1}\mathbb{E}[u(u^{-1}\mathbb{E}[u(X)|\mathcal{F}_t])|\mathcal{F}_s] = c_s(X).
\]

It was shown by Gerber that (under regularity assumptions on \(u\)) the function \(u\) is exponential or linear iff \(c_0(X)\) is cash invariant, i.e. \(c_0(X + m) = c_0(X) + m\), for \(m \in \mathbb{R}\).
Clearly such a premium principle \((c_t)_{t \in \mathbb{N}_0}\) is **time consistent** as, for \(0 \leq s \leq t\),

\[
c_s(c_t(X)) = u^{-1}\mathbb{E}[u(u^{-1}\mathbb{E}[u(X)|\mathcal{F}_t])|\mathcal{F}_s] = c_s(X).
\]

It was shown by Gerber that (under regularity assumptions on \(u\)) the function \(u\) is exponential or linear iff \(c_0(X)\) is cash invariant, i.e. \(c_0(X + m) = c_0(X) + m\), for \(m \in \mathbb{R}\).

In general, \(c_0\) is only normalized on constants, i.e.

\[
c_0(m) = m, \quad \text{for } m \in \mathbb{R},
\]

and \(c_t(m) = m, \quad \text{for } m \in L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})\).
Clearly such a premium principle \((c_t)_{t \in \mathbb{N}_0}\) is time consistent as, for \(0 \leq s \leq t\),

\[
c_s(c_t(X)) = u^{-1}\mathbb{E}[u(u^{-1}\mathbb{E}[u(X)|\mathcal{F}_t])|\mathcal{F}_s] = c_s(X).
\]

It was shown by Gerber that (under regularity assumptions on \(u\)) the function \(u\) is exponential or linear iff \(c_0(X)\) is cash invariant, i.e. \(c_0(X + m) = c_0(X) + m\), for \(m \in \mathbb{R}\).

In general, \(c_0\) is only normalized on constants, i.e.

\[
c_0(m) = m, \quad \text{for } m \in \mathbb{R},
\]

and \(c_t(m) = m, \quad \text{for } m \in L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})\).

Interpretation of \(c\): certainty equivalent.
Theorem B

Let \((c_t)_{t \in \mathbb{N}_0}\) be a family of maps \(c_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})\) which are normalized on constants, strictly monotone, \(\|\cdot\|_\infty\)-continuous, law invariant, and time consistent. Then there is a strictly increasing, continuous function \(u : \mathbb{R} \rightarrow \mathbb{R}\) such that

\[c_t(X) = u^{-1}(E[u(X) | \mathcal{F}_t]),\]

and \(u\) is unique up to affine transformations.
Theorem B

Let \((c_t)_{t \in \mathbb{N}_0}\) be a family of maps \(c_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})\) which are

- normalized on constants,
Theorem B

Let \((c_t)_{t \in \mathbb{N}_0} \) be a family of maps \(c_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow L^\infty(\Omega, \mathcal{F}_t, \mathbb{P}) \) which are

- normalized on constants,
- strictly monotone,

Then there is a strictly increasing, continuous function \(u : \mathbb{R} \rightarrow \mathbb{R} \) such that
\[
c_t(X) = u^{-1}(E[u(X)|\mathcal{F}_t]),
\]
and \(u \) is unique up to affine transformations.

W. Schachermayer joint work with M. Kupper

Representation results for law invariant, time consistent functions
Theorem B

Let \((c_t)_{t \in \mathbb{N}_0}\) be a family of maps \(c_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})\) which are

- normalized on constants,
- strictly monotone,
- \(\|\cdot\|_\infty\)-continuous

Then there is a strictly increasing, continuous function \(u : \mathbb{R} \to \mathbb{R}\) such that

\(c_t(X) = u^{-1}(E[u(X) | \mathcal{F}_t]),\)

and \(u\) is unique up to affine transformations.
Theorem B

Let \((c_t)_{t \in \mathbb{N}_0}\) be a family of maps \(c_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})\) which are

- normalized on constants,
- strictly monotone,
- \(\|\cdot\|_\infty\)-continuous
- law invariant

W. Schachermayer joint work with M. Kupper

Representation results for law invariant, time consistent functions
Theorem B

Let \((c_t)_{t \in \mathbb{N}_0} \) be a family of maps \(c_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to L^\infty(\Omega, \mathcal{F}_t, \mathbb{P}) \) which are

- normalized on constants,
- strictly monotone,
- \(\| \cdot \|_\infty \)-continuous
- law invariant
- time consistent.

Then there is a strictly increasing, continuous function \(u : \mathbb{R} \to \mathbb{R} \) such that

\[c_t(X) = u^{-1}(E[u(X) | \mathcal{F}_t]), \]

and \(u \) is unique up to affine transformations.
Theorem B

Let \((c_t)_{t \in \mathbb{N}_0}\) be a family of maps \(c_t : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to L^\infty(\Omega, \mathcal{F}_t, \mathbb{P})\) which are

- normalized on constants,
- strictly monotone,
- \(||\cdot||_\infty\)-continuous
- law invariant
- time consistent.

Then there is a strictly increasing, continuous function \(u : \mathbb{R} \to \mathbb{R}\) such that

\[c_t(X) = u^{-1}(\mathbb{E}[u(X)|\mathcal{F}_t]), \]

and \(u\) is unique up to affine transformations.

W. Schachermayer joint work with M. Kupper
How to find, for given \((c_t)_{t \in \mathbb{N}_0}\), the function \(u\)?
Sketch of Proof

Suppose \((\varrho_t)_{t \in \mathbb{N}_0}\) (or \((c_t)_{t \in \mathbb{N}_0}\)) satisfies the above list of axioms.

Fix \(\varepsilon > 0\) and define \(\eta_{\varepsilon}(x) \in \mathbb{R}\) implicitly by

\[
\varrho_0(x) = \varrho_0(x + \eta_{\varepsilon}(x) + \varepsilon b),
\]

where \(P[b = 1] = P[b = -1] = \frac{1}{2}\).

The number \(\eta_{\varepsilon}(x)\) may be interpreted as a certainty equivalent for the bet \(\varepsilon b\).

Remark: If \(\varrho_0\) is cash invariant, the function \(\eta_{\varepsilon}(x)\) does not depend on \(x\). For simplicity we focus on this case (Theorem A).
Suppose \((\varrho_t)_{t \in \mathbb{N}_0}\) (or \((c_t)_{t \in \mathbb{N}_0}\)) satisfies the above list of axioms. Fix \(\varepsilon > 0\) and define \(\eta_\varepsilon(x) \in \mathbb{R}\) implicitly by

\[
\varrho_0(x) = \varrho_0(x + \eta_\varepsilon(x) + \varepsilon b), \quad x \in \mathbb{R}
\]

where \(\mathbb{P}[b = 1] = \mathbb{P}[b = -1] = \frac{1}{2}\).
Suppose \((\varrho_t)_{t \in \mathbb{N}_0}\) (or \((c_t)_{t \in \mathbb{N}_0}\)) satisfies the above list of axioms. Fix \(\varepsilon > 0\) and define \(\eta_\varepsilon(x) \in \mathbb{R}\) implicitly by
\[
\varrho_0(x) = \varrho_0(x + \eta_\varepsilon(x) + \varepsilon \, b), \quad x \in \mathbb{R}
\]
where \(\mathbb{P}[b = 1] = \mathbb{P}[b = -1] = \frac{1}{2}\).
The number \(\eta_\varepsilon(x)\) may be interpreted as a *certainty equivalent* for the bet \(\varepsilon b\).
Sketch of Proof

Suppose \((\varrho_t)_{t \in \mathbb{N}_0}\) (or \((c_t)_{t \in \mathbb{N}_0}\)) satisfies the above list of axioms. Fix \(\varepsilon > 0\) and define \(\eta_{\varepsilon}(x) \in \mathbb{R}\) implicitly by

\[
\varrho_0(x) = \varrho_0(x + \eta_{\varepsilon}(x) + \varepsilon \, b), \quad x \in \mathbb{R}
\]

where \(\mathbb{P}[b = 1] = \mathbb{P}[b = -1] = \frac{1}{2}\).

The number \(\eta_{\varepsilon}(x)\) may be interpreted as a certainty equivalent for the bet \(\varepsilon b\).

Remark

If \(\varrho_0\) is cash invariant, the function \(\eta_{\varepsilon}(x)\) does not depend on \(x\).

W. Schachermayer joint work with M. Kupper
Representation results for law invariant, time consistent functions
Suppose \((\varrho_t)_{t \in \mathbb{N}_0}\) (or \((c_t)_{t \in \mathbb{N}_0}\)) satisfies the above list of axioms. Fix \(\varepsilon > 0\) and define \(\eta_\varepsilon(x) \in \mathbb{R}\) implicitly by

\[
\varrho_0(x) = \varrho_0(x + \eta_\varepsilon(x) + \varepsilon \, b), \quad x \in \mathbb{R}
\]

where \(\mathbb{P}[b = 1] = \mathbb{P}[b = -1] = \frac{1}{2}\).

The number \(\eta_\varepsilon(x)\) may be interpreted as a certainty equivalent for the bet \(\varepsilon b\).

Remark

If \(\varrho_0\) is cash invariant, the function \(\eta_\varepsilon(x)\) does not depend on \(x\). For simplicity we focus on this case (Theorem A).
Examples

For the entropic risk measure

\[\varrho_t(X) = \frac{1}{\gamma} \ln \mathbb{E}[\exp(-\gamma X)|\mathcal{F}_t], \]

we find

\[\eta_\varepsilon(x) = 0, \quad \gamma = 0, \]
\[\eta_\varepsilon(x) \approx \gamma \varepsilon^2, \quad 0 < \gamma < \infty, \]
\[\eta_\varepsilon(x) = \varepsilon, \quad \gamma = \infty. \]
Let's start again from a general risk measure \((\varrho_t)_{t \in \mathbb{N}_0}\) satisfying the assumptions of Theorem A. We may find a sequence \((\varepsilon_k)_{k=1}^{\infty}\) tending to zero and \(\hat{\gamma} \in [0, \infty]\) such that

\[
\lim_{k \to \infty} \frac{\eta \varepsilon}{\varepsilon^2} = \hat{\gamma}.
\]
Let’s start again from a general risk measure \((\varrho_t)_{t \in \mathbb{N}_0}\) satisfying the assumptions of Theorem A. We may find a sequence \((\varepsilon_k)_{k=1}^{\infty}\) tending to zero and \(\hat{\gamma} \in [0, \infty]\) such that

\[
\lim_{k \to \infty} \frac{\eta_{\varepsilon}}{\varepsilon^2} = \hat{\gamma}.
\]

Our obvious candidate for the function \(u\) such that

\[
\varrho_t(X) = u^{-1}(\mathbb{E}[u(X)|\mathcal{F}_t])
\]

of course is

\[
u(x) = -e^{-\hat{\gamma}x}, \quad \text{for } 0 < \hat{\gamma} < \infty.
\]
But how to verify that this function indeed induces \((\varrho_t)^{t \in \mathbb{N}_0}\)?
But how to verify that this function indeed induces \((\varphi_t)_{t \in \mathbb{N}_0}\)?

We know the value of \(\varphi_0(X)\) for all random variables of the form

\[
X = x + \eta \varepsilon + \varepsilon \, b,
\]

\[
X = x + \sum_{i=1}^{n} (\eta \varepsilon + \varepsilon \, b_i),
\]

\[
X = x + \sum_{i=1}^{\tau} (\eta \varepsilon + \varepsilon \, b_i),
\]

namely \(\varphi_0(X) = x \approx \frac{1}{\hat{\gamma}} \ln \mathbb{E}[\exp(-\hat{\gamma}X)]\).

Here \((b_i)_{i=1}^{\infty}\) is an i.i.d. sequence of Bernoulli variables, and \(\tau\) is a bounded stopping time.
Remark

The expression

\[X = x + \sum_{i=1}^{\tau} (\eta_i + \epsilon \ b_i) \]

is a discrete variant of the *Skorohod* embedding problem

\[X = x + \int_0^\tau dW_T = x + W_\tau. \]
Remark

The expression

\[X = x + \sum_{i=1}^{\tau} (\eta_{\varepsilon} + \varepsilon b_i) \]

is a discrete variant of the *Skorohod* embedding problem

\[X = x + \int_{0}^{\tau} dW_{\tau} = x + W_{\tau}. \]

In the Skorohod problem "all" random variables \(X \) can be represented as above in distribution.
Remark

The expression

\[X = x + \sum_{i=1}^{\tau} (\eta \varepsilon + \varepsilon b_i) \]

is a discrete variant of the Skorohod embedding problem

\[X = x + \int_{0}^{\tau} dW_{\tau} = x + W_{\tau}. \]

In the Skorohod problem "all" random variables \(X \) can be represented as above in distribution.

In the discrete setting, sufficiently many random variables \(X \) can be represented in distribution to show that we indeed have

\[\varrho_0(X) = \frac{1}{\hat{\gamma}} \ln \mathbb{E}[\exp(-\hat{\gamma}X)], \]

for all \(X \in L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \).